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Abstract

One of the new techniques used in solving boundary-value problems involving ordinary differential equations is the
Sinc–Galerkin method. This method has been shown to be a powerful numerical tool for finding fast and accurate solu-
tions. A less known technique that has been around for almost two decades is the decomposition method. In this paper we
solve boundary-value problems of higher order using these two methods and then compare the results. It is shown that the
Sinc–Galerkin method in many instances gives better results.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recent studies in hydrodynamic and hydromagnetic stability have discovered the existence of a class of
characteristic-value problems in differential equations of high order which have genuine mathematical interest.

Experience in solving high-order boundary value problems has shown that insight may be obtained by solv-
ing the special problem first of all.

The numerical analysis literature on methods for solving higher-order boundary value problems is compar-
atively sparse. The book by Agarwal [5] contains theorems on the conditions for existence and uniqueness of
the solution, though no numerical methods are given therein. More recently, sixth order and eighth-order
boundary value problems are solved in [8,13,24,26].

Accurate and fast numerical solution of two-point boundary value ordinary differential equations is neces-
sary in many important scientific and engineering applications, e.g. boundary layer theory, the study of stellar
interiors, control and optimization theory, and flow networks in biology.
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The aim of this paper is to compare the Sinc–Galerkin and the modified decomposition methods in solving
linear and nonlinear boundary-value problems of order 2n, n = 1, 2, 3,
yð2nÞ ¼ f ðx; yÞ ð1:1Þ

subject to boundary conditions
yðiÞð0Þ ¼ Ai; yðiÞð1Þ ¼ Bi; i ¼ 0; 1; . . . ; n� 1: ð1:2Þ

where Ai and Bi are finite constants. We assume that y is sufficiently differentiable and that an unique solution
of (1.1) exists. It will be shown that although the decomposition method is more popular, the Sinc–Galerkin
method gives better results. To the best of our knowledge such a comparison has not been done before.

In recent years, a lot of attention has been devoted to the study of the Sinc–Galerkin method to investigate
various scientific models. The Sinc–Galerkin methods for ordinary differential equations has many salient fea-
tures due to the properties of the basis functions and the manner in which the problem is discretized. Of equal
practical significance is the fact that the method’s implementation requires no modification in the presence of
singularities. The approximating discrete system depends only on parameters of the differential equation
regardless of whether it is singular or nonsingular. The error of the method converges to zero like
Oðe�k

ffiffiffi
N
p
Þ, as N!1, where N is the numerical of collocation points used, and where k is a positive constant

independent of N.
The efficiency of the method has been formally proved by many researchers. Yin [31] applied the Sinc-Col-

location method to solve singular a problem-like Poisson . Dockery [10] applied the Sinc–Galerkin to handle
reaction–diffusion equations, and Bialecki [7] used the Sinc-Collocation methods to solve a two point bound-
ary value problem. Smith et al. [22] applied the Sinc–Galerkin to handle fourth-order ordinary differential
equations. El-Gamel et al. [13] used the sinc-Galerkkin method to solve linear sixth-order ordinary differential
equation. Also, El-Gamel and Zayed [14] applied the Sinc–Galerkin method to solve nonlinear boundary
value problems. Finally, Mohsen and El-Gamel [21] used Sinc-Collocation method for the linear Fredholm
integro-differential equations. For more details about Sinc–Galerkin method see [12,15–17,20,23] and the ref-
erences therein.

The Adomian decomposition method ADM has been applied to wide class of stochastic and deterministic
problems in many interesting mathematics and physics areas [1,3,30]. This method has some significant advan-
tages over numerical methods. It provides analytic, verifiable,rapidly convergent approximation which yields
insight into the character and the behavior of the solution just as in the closed form solution. Adomian gave a
review of the decomposition method in [2].

Several authors have compared the ADM with some existing techniques in solving different types of prob-
lems. Bellomo and Monaco [6] have compared the ADM and the perturbation technique when they are used in
solving random nonlinear differential equations. Edwards et al. [11] have introduced their comparison of
ADM and Runge-Kutta methods for approximate solutions of some predator prey model equations. Wazwaz
proposed a new approach to develop a nonperturbative approximate solution for the Thomas–Fermi equa-
tion. This approach is based upon a modification of the ADM [27]. Recently, he introduced a comparison
between the ADM and the Taylor series method [29]. He showed that the ADM minimizes the computational
difficulties of the Taylor series in that the components of the solution are determined elegantly by using simple
integrals. Finally, a comparison of Adomians decomposition method and wavelet-Galerkin method for solv-
ing integro-differential equations is made by El-Sayed and Abdel-Aziz [18].

The paper is organized as follows. Section 2, we introduce the Sinc–Galerkin method and show how Sinc
are used to solve higher-order differential equations numerically. The modified decomposition method is dis-
cussed in Section 3. In Section 4, we apply both methods to specific problems, compare the results, and close
with conclusions.

2. The Sinc–Galerkin method

The Sinc–Galerkin procedure for solving the problem (1.1) and (1.2) begins by selecting composite Sinc
functions appropriate to the interval (0,1) so that their translates form a basis functions for the expansion
of the approximate solution y(x). A through review of properties of the Sinc function and the general
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Sinc–Galerkin method can be found in [12,15,20,23]. The next section contains an overview of properties of
the Sinc function that are used in the sequel.

2.1. Sinc interpolation

The goal of this section is to recall notation and definitions of the Sinc function, state some known results,
and derive useful formulas that are important for this paper. First denote the set of all integers, the set of all
real numbers, and the set of all complex numbers by Z, R and C, respectively.

� sinc(z) = sin(pz)/pz, z 2 Z

Note that |sinc(x)| 6 1 for any x 2 R.
� S(k,h)(z) = sinc[(z � kh)/h], z 2 Z, h > 0
� Cðf ; hÞ ¼

P1
k¼�1f ðhkÞSðk; hÞðxÞ; h > 0

Here, C(f,h) is called the Whittaker cardinal expansion of f(x) whenever this series converges.
� CN ðf ; hÞ ¼

PN
k¼�N f ðkhÞSðk; hÞ:

The properties of Whittaker cardinal expansions have been studied and are thoroughly surveyed in [23].
These properties are derived in the infinite strip Dd of the complex plane where for d > 0
Dd ¼ f ¼ nþ ig : jgj < d 6
p
2

n o
:

Approximations can be constructed for infinite, semi-finite, and finite intervals. To construct approximations
on the interval (0, 1), which are used in this paper, consider the conformal map
/ðxÞ ¼ ln
x

1� x

� �
: ð2:1Þ
The map / carries the eye-shaped region
DE ¼ z ¼ xþ iy : arg
z

1� z

� ���� ��� < d 6
p
2

n o
;

onto the infinite strip Dd. The composition
SjðxÞ ¼ Sðj; hÞ � /ðxÞ;

define the basis elements for Eq. (1.1) on the intervals (0,1).

The ‘‘mesh sizes’’ h represents the mesh size in Dd for the uniform grids {kh}, k = 0, ±1, ±2,. . . The Sinc
grid points zk 2 (0,1) in DE will be denoted by xk because they are real. The inverse images of the equi-spaced
grids are
xk ¼ /�1ðkhÞ ¼ ekh

1þ ekh
; ð2:2Þ
and the inverse of / is denoted by w.
wðwÞ ¼ ew

1þ ew
;

The Sinc–Galerkin method requires the derivatives of composite sinc functions be evaluated at the nodes. We
need the following two lemmas.

Lemma 2.1. (See [22]). Let / be the conformal one-to-one mapping of the simply connected domain DE onto Dd,

given by (2.1). Then
dð0Þjk ¼ ½Sðj; hÞ � /ðxÞ�jx¼xk
¼

1; j ¼ k;

0; j 6¼ k;

�
ð2:3Þ

dð1Þjk ¼ h
d

d/
½Sðj; hÞ � /ðxÞ�jx¼xk

¼
0; j ¼ k;
ð�1Þk�j

k�j ; j 6¼ k;

(
ð2:4Þ
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dð2Þjk ¼ h2 d2

d/2
½Sðj; hÞ � /ðxÞ�jx¼xk

¼
�p2

3
; j ¼ k;

�2ð�1Þk�j

ðk�jÞ2 ; j 6¼ k:

8<
: ð2:5Þ

dð3Þjk ¼ h3 d3

d/3
½Sj�
���
x¼xk

¼
0; j ¼ k;
ð�1Þk�j

ðk�jÞ3 ½6� p2ðk � jÞ2�; j 6¼ k;

(
ð2:6Þ
and
dð4Þjk ¼ h4 d4

d/4
½Sj�
���
x¼xk

¼
p4

5
; j ¼ k;

�4ð�1Þk�j

ðk�jÞ4 ½6� p2ðk � jÞ2�; j 6¼ k:

8<
: � ð2:7Þ
With some computations, one can prove the following lemma.
Lemma 2.2. [13]. Let / be the conformal one-to-one mapping of the simply connected domain DE onto Dd, given

by (2.1). Then
dð5Þjk ¼ h5 d5

d/5
½Sðj; hÞ � /ðxÞ�jx¼xk

¼
0; j ¼ k;

jjk; j 6¼ k;

�
ð2:8Þ
where
jjk ¼
ð�1Þk�j

ðk � jÞ5
½120� 20p2ðk � jÞ2 þ p4ðk � jÞ4�;

dð6Þjk ¼ h6 d6

d/6
½Sðj; hÞ � /ðxÞ�jx¼xk

¼
p6

7
; j ¼ k;

ljk; j 6¼ k;

(
ð2:9Þ
where
ljk ¼
�6ð�1Þk�j

ðk � jÞ6
½120� 20p2ðk � jÞ2 þ p4ðk � jÞ4�: �
In Eqs. (2.3)–(2.9) h is step size and xk is a sinc grid point as in (2.2).
2.2. Linear boundary value problems

Consider a linear, BVP of the form
yð2nÞðxÞ þ rðxÞyðxÞ ¼ f ðxÞ ð2:10Þ

subject to boundary conditions
yðiÞð0Þ ¼ 0; yðiÞð1Þ ¼ 0; i ¼ 0; 1; . . . ; n� 1: ð2:11Þ

Assume an approximate solution of the form
ymðxÞ ¼
XN

j¼�M

cjSjðxÞ; m ¼ M þ N þ 1: ð2:12Þ
The unknown coefficients fcjgN
�M in (2.12) are determined by orthogonalizing the residual Lym � f with respect

to the functions fSkgN
k¼�M . This yields the discrete system
hLym � f ; Ski ¼ 0; ð2:13Þ

for k = �M, �M + 1, . . . ,N. The weighted inner product Æ,æ is taken to be
hg; ni ¼
Z 1

0

gðxÞnðxÞwðxÞdx: ð2:14Þ
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Here w(x) plays the role of a weight function which is chosen depending on the boundary conditions, the do-
main, and the differential equation. For the case of 2n order boundary value problems, it is convenient to take
wðxÞ ¼ 1

ð/0ðxÞÞn :
A complete discussion on the choice of the weight function can be found in [14].
The most direct development of the discrete system for Eq. (2.10) is obtained by substituting (2.12) into

(2.10). The system can then be expressed in integral form via (2.14). This approach, however, obscures the
analysis which is necessary for applying Sinc quadrature formulas to (2.13). An alternative approach is to ana-
lyze instead
hyð2nÞ; Ski þ hrðxÞy; Ski ¼ hf ; Ski; k ¼ �M ; . . . ;N : ð2:15Þ

The method of approximating the integrals in (2.15) begins by integrating by parts to transfer all derivatives
from u to Sk. The approximation of the second and third inner of (2.15)
hG; Ski ¼ h
GðxkÞwðxkÞ

/0ðxkÞ
; ð2:16Þ
where G is r(x)y or f.
We need the following two theorem.

Theorem 2.1. [13]. The following relations hold
hyð2nÞ; Ski ¼ h
XN

j¼�M

X2n

i¼0

yðxjÞ
/0ðxjÞhi d

ðiÞ
kj g2n;iðxjÞ: � ð2:17Þ
Replacing each term of (2.15) with the approximation defined in (2.17) and (2.16) respectively, and replac-
ing y(xj) by cj, and dividing by h, we obtain the following theorem.
Theorem 2.2. If the assumed approximate solution of the boundary-value problem (2.10), (2.11) is (2.12), then the

discrete Sinc–Galerkin system for the determination of the unknown coefficients fcjgN
j¼�M is given by
XN

j¼�M

X2n

i¼0

1

hi d
ðiÞ
kj

g2n;iðxjÞ
/0ðxjÞ

cj þ
rðxkÞwðxkÞ

/0ðxkÞ
ck ¼

f ðxkÞwðxkÞ
/0ðxkÞ

k ¼ �M ; . . . ;N : ð2:18Þ
The following notation will be necessary for writing down the system. Let D(g) be the m · m diagonal matrix
DðgÞ ¼

gðx�MÞ
gðx�Mþ1Þ

. . .

gðx0Þ
. . .

gðxN Þ

0
BBBBBBBB@

1
CCCCCCCCA
and define the m · m matrices I(p) (see [19]) for 0 6 p 6 2n by
I ðpÞ ¼ ½dðpÞjk �; j; k ¼ �M ; . . . ;N :
Let c be the m-vector with jth component given by cj, and 1 is an m-vector each of whose components is 1. In
this notation the system in (2.18) takes the matrix form
Ac ¼ H; ð2:19Þ

where
H ¼ D
wf
/0

� �
1 ð2:20Þ
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and
A ¼
X2n

i¼0

1

hi IðiÞDðaiÞ;
the functions ai(x), are given by
a0 ¼
g2n;0 þ rw

/0
and
ai ¼
g2n;i

/0
; 1 6 i 6 2n:
Now we have a linear system of m = M + N + 1 equation of the m unknown coefficients, namely, fcjgN
j¼�M .

We can obtain the coefficient of the approximate solution by solving this linear system by Q-R method.
The solution c = (c�M, . . . ,cN)T gives the coefficients in the approximate Sinc–Galerkin solution um(x) of u(x).

2.3. Nonlinear boundary value problems

Consider a nonlinear, BVP of the form
yð2nÞðxÞ þ rðxÞðxÞymðxÞ ¼ f ðxÞ: ð2:21Þ

The approximate solution for u(x) is represented by the formula
ymðxÞ ¼
XN

j¼�M

cjSjðxÞ; m ¼ M þ N þ 1: ð2:22Þ
The unknown coefficients cj in Eq. (2.22) are determined by orthogonalizing the residual with respect to the
basis functions, i.e.
hyð2nÞ; Ski þ hrðxÞym; Ski ¼ hf ; Ski; �M 6 k 6 N : ð2:23Þ

We need the following lemma:

Lemma 2.3. [14]. The following relations hold
hrðxÞym; Ski ¼ h
wðxkÞymðxkÞrðxkÞ

/0ðxkÞ
: � ð2:24Þ
Replacing each term of (2.23) with the approximations defined in (2.16), (2.17) and (2.24) and replacing
y(xj) by cj and dividing by h, we obtain the following theorem.

Theorem 2.3. If the assumed approximate solution of the boundary-value problem (2.21) and (2.11) is (2.22),
then the discrete Sinc–Galerkin system for the determination of the unknown coefficients fcjgN

j¼�M is given by
XN

j¼�M

X2n

i¼0

1

hi d
ðiÞ
kj

g2n;iðxjÞ
/0ðxjÞ

cj þ
rðxkÞwðxkÞ

/0ðxkÞ
cm

k ¼
f ðxkÞwðxkÞ

/0ðxkÞ
k ¼ �M ; . . . ;N : ð2:25Þ
Using the notation in the pervious section. Let cm be the m-vectors with jth component given by cm
j and 1 is

an m-vector each of whose components is 1. The system in (2.25) takes the matrix form
Acþ Ecm ¼ H;
where
E ¼ D
rw
/0

� �
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and
A ¼
X2n

j¼0

1

hj IðjÞD
g2n;j

/0

� �
and H are defined by Eq. (2.20). Now we have a nonlinear system of m = M + N + 1 equation of the m un-
known coefficients, namely, fcjgN

j¼�M . We can obtain the coefficient of the approximate solution by solving this
nonlinear system by Newton’s method [14]. The solution c = (c�M, . . . ,cN)T gives the coefficients in the approx-
imate Sinc–Galerkin solution um(x) of u(x).

2.4. Treatment of the boundary conditions

In the previous section the development of the Sinc–Galerkin technique for homogeneous boundary con-
ditions provided a practical approach since the sinc function composed with various conformal mappings,
S(j,h)�/, are zero at the endpoints of the interval. If the boundary conditions are nonhomogeneous, then
these conditions need be converted to homogeneous ones via an interpolation by a known function (see [13]).

3. The modified decomposition method

The decomposition method has been shown [1,2] to solve effectively, easily, and accurately a large class of
linear and nonlinear, ordinary or partial, deterministic or stochastic differential equations with approximate
which converge rapidly to accurate solutions. The method is well-suited to physical problems since it makes
unnecessary the linearization, perturbation, and other restrictive methods and assumptions which may change
the problem being solved, sometimes seriously.

3.1. Analysis of the method

In an operator form, Eq. (1.1) can be written as
Ly ¼ f ðx; yÞ;

where the differential operator L is given by
L ¼ d2n

dx2n
: ð3:1Þ
The inverse operator L�1 is therefore considered a 2n-fold integral operator defined by
L�1ð�Þ ¼
Z x

0|{z}
ð2nÞtimes

ð�Þ dx|{z}
ð2nÞtimes

:

Operating with L�1 on (3.1) and using the boundary conditions at x = 0 yields
yðxÞ ¼
X2n�1

j¼0

aj

j!
xj þ L�1½f ðx; yÞ�; ð3:2Þ
where
aj ¼ yðjÞð0Þ; j ¼ n; nþ 1; . . . ; 2n� 1
are constants that will be determined later by using the boundary conditions at x = 1. The other constants
a0,a1, . . . ,an�1 are prescribed in (1.2).

The Adomian decomposition method defines the solution y(x) of (1.1) by the decomposition series
yðxÞ ¼
X1
m¼0

ymðxÞ ð3:3Þ
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and the nonlinear function f(x,y) by an infinite series of polynomials
f ðx; yÞ ¼
X1
m¼0

Am; ð3:4Þ
where the components ym(x) of the solution y(x) will be determined recurrently, and Am are the so-called Ado-
mian polynomials that can be constructed for various classes of nonlinearity according to specific algorithms
set by Adomain [1,2]. Recently, a new algorithm for calculating these polynomials was derived in [28]. Substi-
tuting (3.3) and (3.4) into (3.2) yields
X1
m¼0

ymðxÞ ¼
X2n�1

j¼0

aj

j!
xj þ L�1

X1
m¼0

Am

 !
: ð3:5Þ
The decomposition method identifies the zeroth component y0(x) by all terms that arise from the boundary
condition at x = 0 and from integrating the source term if exists. Based on this identification, the method for-
mally admits the use of the recursive relation
y0ðxÞ ¼
X2n�1

j¼0

Aj

j!
xj;

ykþ1ðxÞ ¼ L�1ðAkÞ; k P 0;

ð3:6Þ
for the determination of the components ym(x) of y(x).
y0ðxÞ ¼ a0;

y1ðxÞ ¼
X2n�1

j¼1

aj

j!
xj þ L�1ðA0Þ;

ykþ1ðxÞ ¼ L�1ðAkÞ; k P 1:

ð3:7Þ
Having determined the components ym(x), m P 0 recurrently, the series solution of y(x) follows immediately
with the constants aj, j = n, n + 1, . . . , 2n � 1 are as yet undetermined.

An important point to be made here is that we can elegantly determine the components ym(x) as far as we
like to enhance the accuracy of the approximation. The approximate
/n ¼
Xn�1

k¼0

yk
can be used to approximate the solution.
Our aim is now to determine the constants aj, j = n, n + 1, . . . , 2n � 1. Imposing the remaining the boundary

conditions at x = 1 on the approximate /n leads to an algebraic system of equations. This system needs only
be solved to obtain approximations to the constants aj, j = n, n + 1, . . . , 2n � 1. Having determined these con-
stants, the numerical solution of the 2n-order boundary value problem follows immediately upon substituting
the resulting components in (3.3).

4. Numerical examples

The examples reported in this section were selected from a large collection of problems to which the Sinc–
Galerkin and modified decomposition methods could be applied. For purposes of comparison, contrast and
performance, examples with known solutions were chosen.

We give four examples, two linear and two nonlinear. These examples demonstrate how the Sinc–Galerkin
method outperforms the modified decomposition method.

For the Sinc–Galerkin, d is taken to be p/2. The step size h and the summation limits M, and N are selected
so that the error in each coordinate direction is a asymptotically balanced. Once M is chosen, the step size and
remaining summation limit can be determined as follows:
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h ¼
ffiffiffiffiffiffiffi
pd
aM

r
and N ¼ aM

b

����
����

	 

:

We use the absolute error which is defined as
ES ¼ juexact solution � USinc–Galerkinj
and
Ed ¼ juexact solution � Umodified decompositionj
Example 4.1. Consider the Linear BVP
yð4Þ ¼ �2ex þ 3y; 0 < x < 1 ð4:1Þ
subject to the boundary conditions
yð0Þ ¼ 1; yð1Þ ¼ e;

y0ð0Þ ¼ 1; y0ð1Þ ¼ e:
The exact solution for this problem is
y ¼ ex:
For modified decomposition method, Eq. (4.1) may be written in an operator form by
Ly ¼ �2ex þ 3y; 0 < x < 1: ð4:2Þ

Operating with L�1 on (4.2) and using the boundary conditions at x = 0, yields
yðxÞ ¼ 1þ xþ a2

2
x2 þ a3

3!
x3 � 2L�1ex þ 3L�1½yðxÞ�; ð4:3Þ
where the inverse operator L�1 is a four-fold integral operator and
a2 ¼ y00ð0Þ; and a3 ¼ yð3Þð0Þ

are constants that will be determined later by using the boundary conditions at x = 1. Substituting the decom-
position series (3.3) for y(x) into (4.3) gives
X1

m¼0

ymðxÞ ¼ 1þ xþ a2

2
x2 þ a3

3!
x3 � 2L�1ðexÞ þ 3L�1

X1
m¼0

ym

 !
: ð4:4Þ
To determine the components ym(x), m P 0, the modified decomposition method introduces the recursive
relation
y0ðxÞ ¼ 1;

y1ðxÞ ¼ xþ a2

2
x2 þ a3

3!
x3 � 2L�1ex þ 3L�1½y0ðxÞ�; ð4:5Þ

ykþ1ðxÞ ¼ 3L�1½ykðxÞ�; k P 1:
This gives
y0ðxÞ ¼ 1;

y1ðxÞ ¼ xþ a2

2
x2 þ a3

3!
a3x3 þ 1

4!
x4 � 2

x5

5!
þ x6

6!
þ x7

7!
þ x8

8!
þ x9

9!
þ x10

10!
þ � � �

	 

;

y2ðxÞ ¼ 3L�1½y1�

¼ 3
x5

5!
þ a2

x6

6!
þ a3

x7

7!
þ x8

8!
� 2

x9

9!
þ x10

10!
þ x11

11!
þ x12

12!
þ � � �

� �	 

;



Table
The ex

x

0.0
0.0568
0.1084
0.1970
0.3313
0.5
0.6687
0.8030
0.9432
0.9927
1.0

Table
Maxim

Sinc–G

0.37E�
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y3ðxÞ ¼ 3L�1½y2�

¼ 9
x9

9!
þ a2

x10

10!
þ a3

x11

11!
þ x12

12!
þ � � �

	 

: ð4:6Þ
Consequently, the approximation of y(x) is given by
yðxÞ ¼ 1þ xþ a2

2
x2 þ a3

3!
x3 þ 1

4!
x4 þ x5

5!
þ ð3a2 � 2Þ x

6

6!
þ ð3a3 � 2Þ x

7

7!
þ x8

8!
þ x9

9!
þ ð9a2 � 8Þ x10

10!

þ ð9a3 � 8Þ x11

11!
þ x12

12!
þ � � � ð4:7Þ
It remains to determine approximations to the constants a2, and a3. This can be achieved by imposing the
boundary conditions at x = 1 on the 4-term approximate /4 derived from (4.7). According, we obtain the alge-
braic system, by solving this algebraic system gives
a2 ¼ 0:99999999461435 and a3 ¼ 1:00000001452276:
The series solution is
yðxÞ ¼ 1þ xþ 0:49999999730717x2 þ 0:16666666908713x3 þ x4

4!
þ x5

5!
þ 0:00138888886645x6

þ 1:984127070571985� 10�4x7 þ x8

8!
þ x9

9!
þ 2:755731788825919� 10�7x10

þ 2:505211165987355� 10�8x11 þ � � � ð4:8Þ
For Sinc–Galerkin method, the parameters selected a ¼ b ¼ 3
2
, M = N = 100. Table 1 exhibits the exact, the

Sinc–Galerkin and the modified decomposition solutions.
Maximum absolute error are tabulated in Table 2 for Sinc–Galerkin together with the modified decompo-

sition method.

Example 4.2. Consider the linear BVP
yð6Þ � y ¼ �6ex; 0 < x < 1 ð4:9Þ

subject to the boundary conditions
1
act, Sinc–Galerkin and modified decomposition solutions for example 1

Exact solution Sinc–Galerkin Modified decomposition

1.0 1.0 1.0
1.053375741 1.053375742 1.053375742
1.150388830 1.150388830 1.150388831
1.385553912 1.385553911 1.385553917
1.507119172 1.507119170 1.507119178
1.648721262 1.648721259 1.648721270
1.961677536 1.961677532 1.961677549
2.411381912 2.411381909 2.411381933
2.601790833 2.601790832 2.601790857
2.697970947 2.697970947 2.697970973
2.718281828 2.718281828 2.718281825

2
um absolute error for example 1

alerkin method ES The decomposition method Ed

008 0.25E�007



Table
The ex

x

0.0
0.0567
0.1970
0.3961
0.4302
0.5
0.6038
0.8772
0.9502
0.9927
1.0

Table
Maxim

Sinc–G

0.92E�
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yð0Þ ¼ 1; y 0ð0Þ ¼ 0; y 00ð0Þ ¼ �1;

yð1Þ ¼ 0; y 0ð1Þ ¼ �e; y00ð1Þ ¼ �2e:
The exact solution for this problem is
y ¼ ð1� xÞex:
For the modified decomposition method, the series solution is
yðxÞ ¼ 1� x2

2!
� 0:33333405442309x3 � 0:12499838066502x4 � 0:03333425662668x5

� 0:00694444444444x6 � 0:00138888888889x7 � 1:984128057177215� 10�4x8

� 2:480148020271310� 10�5x9 � 2:755762454585902� 10�6x10 þ � � � ð4:10Þ
For Sinc–Galerkin method, the parameters selected a ¼ b ¼ 5
2
, M = N = 100. Table 3 exhibits the exact, the

Sinc–Galerkin and the modified decomposition solutions. Maximum absolute error are tabulated in Table
4 for Sinc–Galerkin together with the modified decomposition method.

Example 4.3. [26] Consider the nonlinear BVP
yð6Þ ¼ exy2; 0 < x < 1 ð4:11Þ

subject to the boundary conditions
yð0Þ ¼ 1; y 0ð0Þ ¼ �1; y00ð0Þ ¼ 1;

yð1Þ ¼ e�1; y 0ð1Þ ¼ �e�1; y00ð1Þ ¼ e�1:
The exact solution for this problem is
y ¼ e�x:
Eq. (2.6) may be written in an operator form by
Ly ¼ exy2; 0 < x < 1: ð4:12Þ

Operating with L�1 on (4.12) and using the boundary conditions at x = 0, yields
3
act, Sinc–Galerkin and modified decomposition solutions for example 2

Exact solution Sinc–Galerkin solution Modified decomposition solution

1.0 1.0 1.0
0.9983304 0.9983312 0.9983304
0.9778484 0.9778392 0.9778484
0.8974062 0.8973994 0.8974058
0.8761045 0.8761012 0.8761039
0.8243606 0.8243606 0.8243589
0.7246719 0.7246710 0.7246657
0.2952306 0.2952287 0.2951418
0.1287940 0.1287948 0.1286370
0.0196991 0.0196991 0.0194846
0.00 0.00 0.0

4
um absolute error for example 2

alerkin method ES The decomposition method Ed

005 0.21E�003
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yðxÞ ¼ 1� xþ 1

2
x2 þ 1

3!
a3x3 þ 1

4!
a4x4 þ 1

5!
a5x5 þ L�1½exy2ðxÞ�; ð4:13Þ
where
a3 ¼ y000ð0Þ; a4 ¼ yð4Þð0Þ; and a5 ¼ yð5Þð0Þ

are constants that will be determined later by using the boundary conditions at x = 1. Substituting the decom-
position series (3.3) for y(x) into (4.13) gives
X1

m¼0

ymðxÞ ¼ 1� xþ 1

2
x2 þ 1

3!
a3x3 þ 1

4!
a4x4 þ 1

5!
a5x5 þ L�1 ex

X1
m¼0

Am

 !
; ð4:14Þ
where Am are the so-called Adomian polynomials that represent the nonlinear term y2(x).
To determine the components ym(x), m P 0, the modified decomposition method introduces the recursive

relation
y0ðxÞ ¼ 1;

y1ðxÞ ¼ �xþ 1

2
x2 þ 1

3!
a3x3 þ 1

4!
a4x4 þ 1

5!
a5x5 þ L�1½exA0ðxÞ�;

ykþ1ðxÞ ¼ L�1½exAkðxÞ�; k P 1:

ð4:15Þ
It is useful to the first few Adomian polynomials Am for the nonlinear operator F(y) = y2. Following the anal-
ysis of [1,27] yields:
A0 ¼ F ðy0Þ ¼ y2
0ðxÞ;

A1 ¼ y1ðxÞF 0ðy0Þ ¼ 2y0ðxÞy1ðxÞ;

A2 ¼ y2F 0ðy0Þ þ
y2

1

2!
F 00ðy0Þ ¼ 2y0ðxÞy2ðxÞ þ y2

2ðxÞ
ð4:16Þ
and so on for other polynomials. Inserting (4.16) into (4.15) yields
y0ðxÞ ¼ 1;

y1ðxÞ ¼ �xþ 1

2
x2 þ 1

3!
a3x3 þ 1

4!
a4x4 þ 1

5!
a5x5 þ L�1½exA0ðxÞ�;

¼ �xþ 1

2
x2 þ 1

3!
a3x3 þ 1

4!
a4x4 þ 1

5!
a5x5 þ 1

6!
x6 þ 1

7!
x7 þ 1

8!
x8 þ 1

9!
x9 þ 1

10!
x10 þ 1

11!
x11 þ � � �

y2ðxÞ ¼ L�1½exA1�

¼ � x7

2520
� x8

20160
þ a3x9

181440
þ a3

453600
þ a4

1814400
þ 1

907200

� �
x10

þ a3

1995840
þ a4

3991680
þ a5

19958400
þ 1

3991680

� �
x11 þ � � � ð4:17Þ
Consequently, the approximation of y(x) is given by
yðxÞ ¼ 1� xþ 1

2
x2 þ 1

3!
a3x3 þ 1

4!
a4x4 þ 1

5!
a5x5 þ 1

6!
x6 þ 1

7!
� 1

2520

� �
x7 þ 1

8!
� 1

20160

� �
x8

þ 1

9!
þ a3

181440

� �
x9 þ 1

10!
þ a3

453600
þ a4

1814400
þ 1

907200

� �
x10

þ 1

11!
þ a3

1995840
þ a4

3991680
þ a5

19958400
þ 1

3991680

� �
x11 þ � � � ð4:18Þ
It remains to determine approximations to the constants a3, a4 and a5. This can be achieved by imposing the
boundary conditions at x = 1 on the 3-term approximate /3 derived from (4.18). According, we obtain the
algebraic system, by solving this algebraic system gives



Table
The ex

x

0.0
0.0568
0.1084
0.1970
0.3313
0.5
0.6687
0.8030
0.9432
0.9927
1.0

Table
Maxim

Sinc–G

0.51E�

Table
Maxim

Sinc–G

0.51E�
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a3 ¼ �0:99816409; a4 ¼ 0:98167470; and a5 ¼ �0:939073710:
The series solution is
yðxÞ ¼ 1� xþ 1

2
x2 � 0:1663606817x3 þ 0:0409031125x4 � 0:007825609x5 þ 1

720
x6 � 1

5040
x7

� 1

40320
x8 � 0:000002745x9 � 0:0000002816x10 � 0:00000002567x11 þ � � � ð4:19Þ
For Sinc–Galerkin method, the parameters selected a ¼ b ¼ 3
2
, M = N = 100. Table 5 exhibits the exact, the

Sinc–Galerkin and the modified decomposition solutions.
Maximum absolute error are tabulated in Table 6 for Sinc–Galerkin together with the modified decompo-

sition method.

Example 4.4. [5,9,14,25]. Consider the nonlinear BVP
yð4Þ ¼ 6e�4y � 12

ð1þ xÞ4
; 0 < x < 1
subject to boundary conditions
yð0Þ ¼ 0; yð1Þ ¼ ln 2;

y0ð0Þ ¼ 1; y0ð1Þ ¼ 0:5;
which has the exact solution given by
yðxÞ ¼ lnð1þ xÞ:

For Sinc–Galerkin method, the parameters selected a ¼ b ¼ 1

2
, M = N = 100. Maximum absolute error are

tabulated in Table 7 for Sinc–Galerkin together with the modified decomposition method.
5
act, Sinc–Galerkin and modified decomposition solutions for example 3

Exact solution Sinc–Galerkin Modified decomposition method

1.0 1.0 1.0
0.93174137 0.93174138 0.93174146
0.78922802 0.78922802 0.78923005
0.71806154 0.71806156 0.71806548
0.64294248 0.64294241 0.64294825
0.60653065 0.60653060 0.60653685
0.54069496 0.54069494 0.54070055
0.48753168 0.48753163 0.48753536
0.44802779 0.44802777 0.44802964
0.36894783 0.36894781 0.36894789
0.36787944 0.36787939 0.36787949

7
um absolute error for example 4

alerkin method ES The decomposition method Ed

013 0.57E�008

6
um absolute error for example 3

alerkin method ES The decomposition method Ed

007 0.57E�005
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5. Conclusions

All computations associated with the above examples were performed by using MATLAB. Although the
modified decomposition method has been shown to be a powerful numerical tool for fast and accurate solu-
tions of differential equations, in many instances the Sinc–Galerkin method seems to give better results even
nonlinear; see also [14].

Although the Sinc–Galerkin solution required slightly more computational effort than the modified decom-
position solution, it resulted in more accurate results, especially in the presence of singularities [13]. This may
be attributed to the fact that in the Sinc method in order to obtain an error of order Oðe�ðkNÞ1=2Þ for some k, the
solution and the nonhomogeneous term have to be nice and smooth.
References

[1] G. Adomain, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994.
[2] G. Adomain, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988) 501–544.
[3] G. Adomain, R. Rach, Analytic solution of nonlinear boundary value problems in several dimensions by decomposition, J. Math.

Anal. Appl. 174 (1993) 118–137.
[5] R. Agarwal, Boundary Value Problems for High Ordinary Differential Equations, World Scientific, Singapore, 1986.
[6] N. Bellomo, R. Monaco, A comparison between Adomian’s decomposition methods and perturbation techniques for nonlinear

random differential equations, J. Math. Anal. Appl. 110 (1985) 495502.
[7] B. Bialecki, Sinc-Collocation methods for two-point boundary value problems, IMA J. Numer. Anal. 11 (1991) 357–375.
[8] A. Boutayeb, E. Twizell, Finite-difference methods for the solution of special eighth-order boundary value problems, Intern.

J. Comput. Math. 48 (1993) 63–75.
[9] M. Chawal, C. Katti, Finite difference methods for two-point boundary value problems involving high order differential equations,

BIT 19 (1979) 27–33.
[10] J.D. Dockery, Numerical solution of travelling waves for reaction-Diffusion equations via the Sinc–Galerkin method, in: K. Bowers,

J. Lund (Eds.), Computation and Control: Proceedings of the Bozeman Conference, Bozeman, Montana, 1993, Noston, Birkhauser,
1993, pp. 95–113.

[11] J.Y. Edwards, J.A. Roberts, N.J. Ford, A comparison of Adomian’s decomposition method and RungeKutta methods for
approximate solution of some predator prey model equations, Technical Report No. 309, Manchester Center of Computational
Mathematics,1997, p. 117.

[12] M. El-Gamel, A. Zayed, A comparison between the wavelet-Galerkin and the Sinc–Galerkin methods in solving nonhomogeneous
heat equations, in: Contemporary Mathematics of the American Mathematical Society, Zuhair Nashed, Otmar Scherzer (Eds.),
Series, Inverse Problem, Image Analysis, and Medical Imaging, vol. 313, AMS, Providence, 2002.

[13] M. El-Gamel, J.R. Cannon, A. Zayed, Sinc–Galerkin method for solving linear Sixth order boundary-value problems, Math. Comp.
73 (2004) 1325–1343.

[14] M. El-Gamel, A. Zayed, Sinc–Galerkin method for solving nonlinear boundary-value problems, Comput. Math. Appl. 48 (2004)
1285–1298.

[15] M. El-Gamel, J. Cannon, On the solution of second order singularly-perturbed boundary value problem by Sinc–Galerkin method, Z.
Angew. Math. Phys. 56 (2005) 45–58.

[16] M. El-Gamel, A numerical scheme for solving nonhomogeneuous time-dependent problems, Z. Angew. Math. Phys. 57 (2006) 369–
383.

[17] M. El-Gamel, The Sinc–Galerkin method for solving singularly-perturbed reaction–diffusion problem, ETNA 23 (2006) 129–140.
[18] S. El-Sayed, M. Abdel-Aziz, A comparison of Adomian’s decomposition method and wavelet-Galerkin method for solving integro-

differential equations, Appl. Math. Comput. 136 (2003) 151–159.
[19] V. Grenander, G. Szego, Toeplitz Forms and Their Applications, second ed., Chelsea Publishing Co, Orlando, 1985.
[20] J. Lund, K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.
[21] A. Mohsen, M. El-Gamel, A Sinc-Collocation method for the linear Fredholm integro-differential equations, Z. Angew. Math. Phys.,

in press.
[22] R. Smith, G. Bogar, K. Bowers, J. Lund, The Sinc–Galerkin method for fourth-order differential equations, SIAM J. Numer. Anal.

28 (1991) 760–788.
[23] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993.
[24] E. Twizell, A. Boutayeb, Numerical methods for solution of sixth-order boundary value problems with applications to Benard layer

eigenvalue problems, Proc. R. Soc. Lond. Ser. A 431 (1990) 433–450.
[25] E. Twizell, S. Tirmizi, Multiderivative methods for nonlinear beam problems, Commun. Appl. Numer. Meth. 4 (1988) 43–50.
[26] A. Wazwaz, The numerical solution of sixth order boundary value problems by the modified decomposition method, Appl. Math.

Comput. 118 (2001) 311–325.
[27] A. Wazwaz, The modified decomposition method and Pade’ approximants for solving the Thomas–Fermi equation, Appl. Math.

Comput. 105 (1999) 11–19.



M. El-gamel / Journal of Computational Physics 223 (2007) 369–383 383
[28] A. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput. 111 (2000) 33–51.
[29] A. Wazwaz, A comparison between Adomian decomposition method and Taylor series method in the series solutions, Appl. Math.

Comput. 79 (1998) 37–44.
[30] E. Yee, Application of the decomposition method to the solution of the reaction convection- diffusion equation, Appl. Math.

Comput. 56 (1993) 127.
[31] G. Yin, Sinc-Collocation method with orthogonalization for singular problem-like poisson, Math. Comput. 62 (1994) 21–40.


	A comparison between the Sinc-Galerkin and the modified decomposition methods for solving two-point boundary-value problems
	Introduction
	The Sinc-Galerkin method
	Sinc interpolation
	Linear boundary value problems
	Nonlinear boundary value problems
	Treatment of the boundary conditions

	The modified decomposition method
	Analysis of the method

	Numerical examples
	Conclusions
	References


